

Mitigation potential of forest management and wood products use

Simulation study for intensive monitoring plots of Brandenburg, Germany

Hubert Jochheim, Pau Brunet Navarro, Bart Muys

Global Carbon Budget

Which forest management offers the highest CO₂ mitigation potential?

Increasing carbon sequestration in forest ecosystems

or

Increasing harvest to intensify the usage of wood

Assessment of two forest management strategies on the CO₂ mitigation potential taking into account

- Carbon stocks in ecosystems (vegetation, litter, CWD, soil)
- Carbon stocks in wood products
 (paper + paperboards, furniture, construction)
- Substitution effects of wood products use (energy and material substitution)

Wood products

- wood products model (CASTLE_WPM)
- C stocks and fluxes
- substitution effects

Forest growth and C budget of ecosystems

physiology-based model (Biome-BGC vers. ZALF)

Forest management

Model approach

thinning scenarios

Investigated sites in Brandenburg/Germany

7 intensive monitoring plots of ICP Forests Level II

Pine	Beech	
Pinus sylvestris	Fagus sylvatica	
	5 - 10 0 -	
DE1201 DE1202	DE1207	
DE1203 DE1204		
DE1205 DE1206		
DEIZOS DEIZOO		

Management strategies	Yield → increase yield	Business as usual (BAU) → yield table	Storage → increase storage
Management measures			
Rotation period	short Beech 120 yrs., Pine 90 yrs.	intermediate Beech 180 yrs., Pine 120 yrs.	long Beech 240 yrs., Pine 180 yrs.
Thinning intensity	high (+10%)	intermediate	low (-20%)
Harvest fraction	high (+5%)	intermediate	low (-20%)

Simulation period

Wood Products Model (CASTLE_WPM)

Displacement factors:

(Knauf et al. 2015)

- 1.50 t CO₂-C/t HWP-C for material substitution
- 0.67 t CO₂-C/t HWP-C for energy substitution

Brunet-Navarro et al. 2018: Journal of Cleaner Production 170: 137-146

Development of C stocks over one rotation period

Effects of forest management on C stocks of the forestry sector

- Similar results of all sites
- Increasing C stocks under the Storage strategy
- Decreasing C stocks under the Yield strategy
- Mean C fraction of wood products → 6 – 11 %

Mean values of 7 plots

Storage strategy

- Forest ecosystems 1 37 t C ha⁻¹, mainly vegetation
- Wood products ¹ 5 t C ha⁻¹
- Forestry sector 1 32 t C ha⁻¹

Yield strategy

- Forest ecosystems ↓ 32 t C ha⁻¹, mainly vegetation
- Wood products \uparrow 2 t C ha⁻¹
- Forestry sector \downarrow 31 t C ha⁻¹

Effects of forest management on substitution effects due to wood products use

Mean values of 7 plots

Storage strategy

- Wood harvest \downarrow 0.49 t C ha⁻¹ a⁻¹
- Substitution effects ↓ 0.55 t C ha⁻¹ a⁻¹

Yield strategy

- Wood harvest 10.15 t C ha⁻¹ a⁻¹
- Substitution effects
- 1 0.15 t C ha⁻¹ a⁻¹ 1 0.17 t C ha⁻¹ a⁻¹

Approach: Compare C stocks in the forestry sector **at steady state** with the **cumulative substitution effects** as **difference to BAU**.

Storage strategy

The advantage of higher C stocks in the forestry sector compared to BAU (31.7 t C ha^{-1}) is overcompensated by lower substitution effects (-0.553 t C $ha^{-1}a^{-1}$) after 57 years.

Yield strategy

The disadvantage of lower C stocks in forest ecosystems and wood products compared to BAU (-30.7 t C ha^{-1}) is overcompensated by higher substitution effects (0.173 t C $ha^{-1} a^{-1}$) after 177 years.

- The forest management strategy "storage" provides the highest C sequestration potential in the forestry sector, the "yield" strategy the lowest.
- The increase of C stocks in ecosystems in the storage strategy is partly compensated by lower C stocks in wood products.
- The storage strategy shows higher mitigation potential due to carbon storage, but decreasing cumulative substitution effect.
- The yield strategy shows lower mitigation potential due to carbon storage, but increasing cumulative substitution effect.

- Forest management can contribute to mitigate climate change.
- Substitution effects of wood products use have to be considered when assessing forest management effects.
- The advantage of the storage strategy compared to BAU lasts only for half of a rotation period until overcompensated by the disadvantage of lower substitution effects.
- The approach combining potential C stocks at steady state with rates of substitution effects is an alternative measure to assess mitigation effects of forest management.

www.zalf.de