

Uncertainty to sources of ozone and vegetation data for estimating POD_{1-SPEC}

M. Cailleret, M. Haeni, M. Ferretti, A. Gessler, A. Rigling, AK. Prescher, D. Simpson, ICP-Forests experts, M. Schaub

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Bundesamt für Umwelt BAFU Office fédéral de l'environnement OFEV Ufficio federale dell'ambiente UFAM Uffizi federal d'ambient UFAM

Impacts of ozone on tree functions and forest growth

As a strong oxidant, ozone has a negative impact on many cellular and molecular processes

Tree biomass is consequently reduced, with a lower magnitude for evergreen species

Impacts of ozone on tree functions and forest growth

As a strong oxidant, ozone has a negative impact on many cellular and molecular processes

Tree biomass is consequently reduced, with a lower magnitude for evergreen species

Ferretti et al. 2018 Wittig et al. 2009

For adult trees, growth is mainly sink-driven

Körner 2015

Other environmental factors may have a stronger impact

Acclimation and compensatory processes

See Cailleret et al. 2018

Context

Considering that the effects of ozone on forest growth are most likely reduced, we need robust ozone metrics

- Concentration-based approach (e.g, mean [O₃], AOT₄₀)
- Flux-based approach (e.g, POD_{v-SPEC})

There are various sources of uncertainty that may affect the precision of these metrics :

Detecting the most important sources of uncertainty provides us research directions to improve our modeling framework

Sources of uncertainty in the calculation of POD_{1-SPEC}

Cascade of uncertainty for a given site and species

+ soil properties, stomatal model, species-specific parameters...

Sources of uncertainty in the calculation of POD_{1-SPEC}

Cascade of uncertainty for a given site and species

Sources of uncertainty in data input considered here

Measured hourly data (active)

Constant 2-weeks mean (passive)

Reconstructed (passive; 3-parameters cos function)

Sources of uncertainty in data input considered here

Approach: multifactorial simulation design

- DO₃SE model : Deposition for Ozone Stomatal Exchange (Emberson et al. 2001)
- 10 sites, 74 sites*years
- 4 species with varying leaf and stomatal strategies

- Multifactorial simulation design -> 14208 runs
- Variance decomposition of POD_{1-SPEC} values based on the sum of squares of an anova (see Horemans et al. 2016)

Results: variability in POD_{1-SPEC} accross all simulations

Major sources of variability:

- Site (42%)
- Species (24%)

Results: variability in POD_{1-SPEC} accross all simulations

Major sources of variability:

- Site (42%)
- Species (24%)
- Year nested in site (24%)
- Sources of ozone and vegetation input data (5%)

Uncertainty due to data inputs for Fagus sylvatica

High variability in POD_{1-SPEC} at some sites*years due to the uncertainty in phenological predictions

The relative impact of each uncertainty source strongly differs among sites and years

Uncertainty due to data inputs for Picea abies

No impact of phenology

The relative impact of each uncertainty source strongly differs among sites

Uncertainty due to data inputs for all species

ozone can. height root depth phenology residuals LAI

pine

Sum of squares (%)

Sum of squares

100 80 60 40 20 0

POD_{1-SPEC}

1e+05

8e+04

6e+04

4e+04

2e+04

0e+00

Uncertainty due to data inputs for all species

ozonecan. heightroot depthLAIphenologyresiduals

Sum of squares (%)

Sum of squares

1e+05

8e+04

6e+04

4e+04

2e+04

0e+00

1e+06

8e+05

6e+05

4e+05

2e+05

0e+00

beech

oak

spruce

pine

Each source of uncertainty matters! This depends on the species, site, and ozone metric of interest.

Ozone data is not the main source of uncertainty for POD_{1-SPEC} . Passive data are highly valuable to increase the spatial and temporal data coverage

Highlights the need for 'ensemble modeling' approaches to derive robust O3 metrics and to assess their uncertainties.

Preliminary results !

- more uncertainty sources (e.g., modeled climate and ozone data from EMEP)
- Include more sites -> currently in progress (PRO₃FILE project), but we
 need more (clean) hourly climate, and ozone data !

Uncertainty to ozone and vegetation data sources for estimating POD_{1-SPEC}

M. Cailleret, M. Haeni, M. Ferretti, A. Gessler, A. Rigling, AK. Prescher, D. Simpson, ICP-Forests experts, M. Schaub

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Bundesamt für Umwelt BAFU Office fédéral de l'environnement OFEV Ufficio federale dell'ambiente UFAM Uffizi federal d'ambient UFAM

Uncertainty analysis rather than sensitivity analysis

Contradicting ozone-growth relationships

Project framework

Implementation of a growth reduction due to ozone

- GRF = (DDGF * SMGF * SNGF * ALGF * CLGF)^{1/3} * O_3 GF
- O₃GF calculated using species-specific DRRs derived during the ECLAIRE project (for spruce and beech)
- POD₁ values from the EMEP model

European-wide decrease in O3 concentration

Slope = -0.77 *ug*/m3; p < 0.001

